Tính khoảng cách từ một điểm đến một đường thẳng – Toán lớp 10

Tính khoảng cách từ một điểm đến một đường thẳng

A. Phương pháp giải

+ Cho đường thẳng d: ax + by + c = 0 và điểm M ( x0; y0). Khi đó khoảng cách từ điểm M đến đường thẳng d là: d(M; d) =

+ Cho điểm A( xA; yA) và điểm B( xB; yB) . Khoảng cách hai điểm này là :

AB =

Chú ý: Trong trường hợp đường thẳng d chưa viết dưới dạng tổng quát thì đầu tiên ta cần đưa đường thẳng d về dạng tổng quát.

B. Ví dụ minh họa

Ví dụ 1: Khoảng cách từ điểm M( 1; -1) đến đường thẳng ( a) : 3x – 4y – 21 = 0 là:

A. 1 B. 2 C. D.

Hướng dẫn giải

Khoảng cách từ điểm M đến đường thẳng ( a) là:

d(M;a) = =

Chọn D.

Ví dụ 2: Khoảng cách từ điểm O đến đường thẳng d: = 1 là:

A. 4,8 B. C. 1 D. 6

Hướng dẫn giải

Đường thẳng d: = 1 ⇔ 8x + 6y – 48 = 0

⇒ Khoảng cách từ điểm O đến đường thẳng d là :

d( O; d) = = 4,8

Chọn A.

Ví dụ 3: Khoảng cách từ điểm M(2; 0) đến đường thẳng là:

A. 2 B. C. D.

Hướng dẫn giải

+ Ta đưa đường thẳng d về dạng tổng quát:

(d) :

⇒ Phương trình ( d) : 4( x – 1) – 3( y – 2) = 0 hay 4x – 3y + 2 = 0

+ Khoảng cách từ điểm M đến d là:

d( M; d) = = 2

Chọn A.

Ví dụ 4. Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng (d): 8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

A. R = 4 B. R = 6 C. R = 8 D. R = 10

Rất hay:  05 kỹ năng chốt Sale đỉnh cao một nhân viên bán hàng nên nắm

Lời giải

Do đường thẳng d tiếp xúc với đường tròn ( C) nên khoảng cách từ tâm đường tròn đến đường thẳng d chính là bán kính R của đường tròn

⇒ R= d(O; d) = = 10

Chọn D.

Ví dụ 5 . Khoảng cách từ điểm M( -1; 1) đến đường thẳng d: 3x – 4y + 5 = 0 bằng:

A. B. 1 C. D.

Lời giải

Khoảng cách từ điểm M đến đường thẳng d là:

d( M; d) = =

Chọn A.

Ví dụ 6. Khoảng cách từ giao điểm của hai đường thẳng (a): x – 3y + 4 = 0 và (b): 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0 bằng:

A. 2√10 B. C. D. 2

Lời giải

Gọi A là giao điểm của hai đường thẳng ( a) và ( b) tọa độ điểm A là nghiệm hệ phương trình :

⇒ A( -1; 1)

Khoảng cách từ điểm A đến đường thẳng ∆ là :

d( A; ∆) = =

Chọn C

Ví dụ 7. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có A( 1; 2) ; B(0; 3) và C(4; 0) . Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. B. 3 C. D.

Lời giải

+ Phương trình đường thẳng BC:

⇒ ( BC) : 3(x – 0) + 4( y – 3) = 0 hay 3x + 4y – 12 = 0

⇒ chiều cao của tam giác kẻ từ đỉnh A chính là khoảng cách từ điểm A đến đường thẳng BC.

d( A; BC) = =

Chọn A.

Ví dụ 8. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3;1) . Tính diện tích tam giác ABC.

A. 10 B. 5 C. √26 D. 2√5

Rất hay:  Cách tẩy keo 502 trên da & đồ vật cực kỳ hiệu quả - VinID

Lời giải

+ Phương trình BC:

⇒Phương trình BC: 2( x – 1) + 1( y – 5) = 0 hay 2x + y – 7 = 0

⇒ d( A;BC) = = √5

+ BC = = 2√5

⇒ diện tích tam giác ABC là: S = .d( A; BC).BC = .√5.2√5 = 5

Chọn B.

Ví dụ 9: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d1 : 4x – 3y + 5 = 0 và d2: 3x + 4y – 5 = 0, đỉnh A( 2; 1). Diện tích của hình chữ nhật là:

A. 1. B. 2 C. 3 D. 4

Lời giải

+ Nhận xét : điểm A không thuộc hai đường thẳng trên.

⇒ Độ dài hai cạnh kề của hình chữ nhật bằng khoảng cách từ A(2; 1) đến hai đường thẳng trên, do đó diện tích hình chữ nhật bằng

S = = 2 .

Chọn B.

C. Bài tập vận dụng

Câu 1: Khoảng cách từ điểm M( 2;0) đến đường thẳng là:

A. 2 B. C. D.

Câu 2: Đường tròn ( C) có tâm I ( -2; -2) và tiếp xúc với đường thẳng d: 5x + 12y – 10 = 0. Bán kính R của đường tròn ( C) bằng:

A. R = B. R = C. R = 44 D. R =

Câu 3: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng (a) : 4x – 3y + 5 = 0 và (b) : 3x + 4y – 5 = 0. Biết hình chữ nhật có đỉnh A( 2 ;1). Diện tích của hình chữ nhật là:

A. 1 B. 2 C. 3 D. 4

Câu 4: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC ?

A. 3 B. C. D. 147

Câu 5: Khoảng cách từ A(3; 1) đến đường thẳng gần với số nào sau đây ?

Rất hay:  Bật mí cách giặt quần áo thơm lâu bằng máy giặt - YCA

A. 0, 85 B. 0,9 C. 0,95 D. 1

Câu 6: Hai cạnh của hình chữ nhật nằm trên hai đường thẳng 4x – 3y + 5 = 0 và 3x + 4y + 5 = 0 đỉnh A(2; 1) . Diện tích của hình chữ nhật là

A. 6 B. 2 C. 3 D. 4

Câu 7: Tính diện tích hình bình hành ABCD biết A( 1; -2) ; B( 2; 0) và D( -1; 3)

A. 6 B. 4,5 C. 3 D. 9

Câu 8: Tính khoảng cách từ giao điểm của hai đường thẳn (d) : x + y – 2 = 0 và ( ∆) : 2x + 3y – 5 = 0 đến đường thẳng (d’) : 3x – 4y + 11 = 0

A. 1 B. 2 C. 3 D. 4

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

  • Các bài toán cực trị liên quan đến đường thẳng
  • Tìm điểm thuộc đường thẳng có độ dài thỏa mãn điều kiện
  • Tìm khoảng cách giữa hai đường thẳng song song
  • Vị trí tương đối của 2 điểm với đường thẳng: cùng phía, khác phía
  • Cách xác định góc giữa hai đường thẳng
  • Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc
  • Viết phương trình đường phân giác của góc tạo bởi hai đường thẳng

Đã có lời giải bài tập lớp 10 sách mới:

  • (mới) Giải bài tập Lớp 10 Kết nối tri thức
  • (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
  • (mới) Giải bài tập Lớp 10 Cánh diều

Săn SALE shopee tháng 5:

  • Nước tẩy trang làm sạch L’Oreal giảm 50k
  • Kem khử mùi Dove giảm 30k
  • Combo Dầu Gội, Dầu Xả TRESEMME tặng 3 quà