ĐIỀU KIỆN VỀ NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI
Giải phương trình, tìm điều kiện về nghiệm của phương trình bậc hai là một nội dung quan trọng trong chương trình THCS, nhất là bồi dưỡng toán 9
Các em cần phải nắm được các kiến thức về công thức nghiệm phương trình bậc 2, định lý Vi-ét, các kiến thức có liên quan, các em cần có sự say mê, hứng thú với loại này và có điều kiện tiếp cận với nhiều dạng bài tập điển hình.
Các phương pháp tìm điều kiện về nghiệm của phương trình là :” Phương pháp so sánh nghiệm của phương trình bậc 2 với số 0” ;” Phương pháp so sánh nghiệm của phương trình bậc 2 với 1 số bất kỳ ”; “so sánh nghiệm của phương trình quy về phương trình bậc 2 ”.
A- Dấu của các nghiệm của phương trình bậc hai
Theo hệ thức Vi-ét nếu phương trình bậc hai [a{{x}^{2}}+bx+c=0(ane 0)]: có nghiệm [{{x}_{1}},{{x}_{2}}] thì [S={{x}_{1}}+{{x}_{2}}=frac{-b}{a};] [P={{x}_{1}}.{{x}_{2}}=frac{c}{a}].
Do đó điều kiện để một phương trình bậc 2 :
– Có 2 nghiệm dương là: [Delta ge 0;P>0;S>0]
– Có 2 nghiệm âm là: [Delta ge 0;P>0;S<0]
– Có 2 nghiệm trái dấu là: [P<0] ( khi đó hiển nhiên Δ>0).
B- So sánh nghiệm của phương trình bậc 2 với một số
I/ So sánh nghiệm của phương trình bậc 2 với số 0
Trong nhiều trường hợp ta cần so sánh nghiệm của phương trình bậc 2 với một số cho trước, trong đó có nhiều bài toán đòi hỏi tìm điều kiện để phương trình bậc 2: [a{{x}^{2}}+bx+c=0(ane 0)] có ít nhất một nghiệm không âm.
VD1: Tìm các giá trị của m để phương trình sau có ít nhất một nghiệm không âm:
[{{x}^{2}}+mx+2m-4=0] (1)Cách 1:
[Delta ={{m}^{2}}-4(2m-4)={{(m-4)}^{2}}ge 0] [forall m] khi đó phương trình có 2 nghiệm [{{x}_{1}},{{x}_{2}}] thỏa mãn: [P=2m-4;S=-m]Trước hết ta tìm điều kiện để phương trình (1) có hai nghiệm đều âm. Điều kiện đó là :
Vậy điều kiện để phương trình (1) có ít nhất một nghiệm không âm là [mle 2].
Cách 2: [Delta ={{m}^{2}}-4(2m-4)={{(m-4)}^{2}}ge 0forall m]; [P=2m-4;S=-m].
– Nếu [Ple 0][Leftrightarrow mle 2], thì phương trình (1) tông tại nghiệm không âm.
– Nếu [P>0] thì phương trình có 2 nghiệm cùng dấu. Để thỏa mãn đề bài ta phải có [S>0]. Giải điều kiện [P>0;S>0;] ta được m > 2 và m < 0 không xảy ra.
Kết luận: [mle 2].
Cách 3: Giải phương trình (1): [Delta ={{m}^{2}}-4(2m-4)={{(m-4)}^{2}}ge 0forall m]
Ta có: [{{x}_{1}}=frac{-m-(m-4)}{2}=2-m]; [{{x}_{2}}=frac{-m+(m-4)}{2}=-2]
Do [{{x}_{2}}=-2<0] nên ta phải có [{{x}_{1}}ge 0Leftrightarrow 2-mge 0Leftrightarrow mle 2].
Ví dụ 2: Cho phương trình [{{x}^{2}}-2(m+3)x+4m-1=0] (2). Tìm giá trị của m để phương trình có hai nghiệm dương.
Giải
Phương trình (2) có hai nghiệm dương
II/ So sánh nghiệm của phương trình bậc 2 với một số bất kỳ
Trong nhiều trường hợp để so sánh nghiệm của phương trình bậc 2 với một số bất kỳ ta
có thể quy về trường hợp so sánh nghiệm của phương trình bậc 2 với số 0:
Ví dụ 1: Tìm các giá trị của m để phương trình sau có ít nhất một nghiệm lớn hơn hoặc bằng 2: [{{x}^{2}}+mx+1=0] (1)
Cách 1: Đặt y = x – 2 [Rightarrow x=y+2] thay vào phương trình (1), ta được:
[{{left( y+2 right)}^{2}}+mleft( y+2 right)-1=0Leftrightarrow {{y}^{2}}+left( 4+m right)y+3-2m=0] (2)Ta cần tìm nghiệm m để phương trình (2) có ít nhất một nghiệm không âm.
[Delta ={{left( m+4 right)}^{2}}-4left( 2m+3 right)={{m}^{2}}+4>0forall m] [P=2m+3;S=-left( m+4 right)]. Điều kiện để phương trình (2) có 2 nghiệm đều âm là :Vậy với [mle frac{-3}{2}] thì phương trình (2) có ít nhất một nghiệm không âm tức là (1) có ít nhất một nghiệm lớn hơn hoặc bằng 2.
Cách 2:
Giải phương trình (1) ta được: [{{x}_{1}}=frac{-m+sqrt{{{m}^{2}}+4}}{2}]; [{{x}_{2}}=frac{-m-sqrt{{{m}^{2}}+4}}{2}].
Ta thấy [{{x}_{1}}>{{x}_{2}}] nên chỉ cần tìm m để [{{x}_{1}}ge 2]. Ta có:
[frac{-m+sqrt{{{m}^{2}}+4}}{2}ge 2Leftrightarrow sqrt{{{m}^{2}}+4}ge m+4] (3)– Nếu [mle -4] thì (3) có vế phải âm, vế trái dương nên (3) đúng.
– Nếu [m>-4] thì (3) [Leftrightarrow {{m}^{2}}+4={{m}^{2}}+8m+16Leftrightarrow mle frac{-3}{2}]. Ta được [-4le mle frac{-3}{2}].
Gộp [mle -4] và [-4le mle frac{-3}{2}Rightarrow mle frac{-3}{2}] là giá trị cần tìm của m.
Ví dụ 2:
Tìm các giá trị của m để phương trình sau có 2 nghiệm phân biệt nhỏ hơn 2:
[3{{x}^{2}}-4x+2left( m-1 right)=0] (1)Giải
Cách 1: đặt [y=x-2Rightarrow x=y+2] thay vào (1) ta được:
[3{{left( y+2 right)}^{2}}-4left( y+2 right)+2left( m-1 right)=0Leftrightarrow 3{{y}^{2}}+8y+2m+2=0] (2)Cần tìm m để phương trình (2) có 2 nghiệm âm phân biệt. Ta giải điều kiện:
Kết luận: Với [-1
Cách 2:
Xét phương trình (1). Giải điều kiện:
Giải (2) được [m<frac{5}{3}].
Giải (3): [{{x}_{1}}.{{x}_{2}}-2left( {{x}_{1}}+{{x}_{2}} right)+4>0Leftrightarrow frac{2left( m-1 right)}{3}-2.frac{4}{3}+4>0Leftrightarrow m>-1]
Giải (4): [{{x}_{1}}+{{x}_{2}}-4<0Leftrightarrow frac{4}{3}-4<0] luôn đúng.
Vậy ra được [-1
Cách 3: giải phương trình (1): [{{Delta }^{‘}}=4-6left( m-1 right)=10-6m]
Nếu [{{Delta }^{‘}}>0Leftrightarrow m<frac{5}{3}] thì phương trình (1) có 2 nghiệm phân biệt:
[{{x}_{1}}=frac{2-sqrt{10-6m}}{3}]; [{{x}_{2}}=frac{2+sqrt{10-6m}}{3}]Do [{{x}_{1}}<{{x}_{2}}] nên điều kiện để phương trình (1) có 2 nghiệm phân biệ nhỏ hơn 2 là:
[{{x}_{2}}<2Leftrightarrow 2+sqrt{10-6m}<6Leftrightarrow sqrt{10-6m}<4Leftrightarrow 10-6m<16Leftrightarrow m>-1]Vậy ta được: [-1
III/ Điều kiện về nghiệm của phương trình quy về phương trình bậc 2
Ví dụ 1 Tìm giá trị m để phương trình sau có nghiệm
[{{x}^{4}}+m{{x}^{2}}+2n-4=0] (1)Giải
Đặt [{{x}^{2}}=yge 0]. Điều kiện để phương trình (1) có nghiệm là phương trình [{{y}^{2}}+my+2m-4=0] có ít nhất một nghiệm không âm.
Theo kết quả ở VD1 mục I, các giá trị của m cần tìm là [mle 2]
Ví dụ 2: TÌm các giá trị của m để tập nghiệm của phương trình
[x-sqrt{1-{{x}^{2}}}=m] (1) chỉ có 1 phần tửGiải
Do đó tập nghiệm của phương trình (1) chỉ có một phần tử khi và chỉ khi có 1 và chỉ 1 nghiệm của phương trình (2) thoản mãn điều kiện [xge m]. Đặt x -m =y. Khi đó phương trình (2) trở thành [2{{y}^{2}}+2my+{{m}^{2}}-1=0] (3)
Cần tìm m để có một nghiệm của phương trình (3) thỏa mãn [yge 0].
Có 3 trường hợp xảy ra:
a) Phương trình (3) có nghiệm kép không âm
b) Phương trình (3) co s2 nghiệm trái dấu:
[P<0Leftrightarrow frac{{{m}^{2}}-1}{2}<0Leftrightarrow m=1]c) Phương trình (3) có một nghiệm âm, nghiệm còn lại bằng 0:
Kết luận [m=-sqrt{2}] hoặc [-1
Ví dụ 3: Tìm các giá trị của m để phương trình sau có 4 nghiệm phân biệt:
[xleft( x-2 right)left( x+2 right)left( x+4 right)=m] (1)Giải
(1) [Leftrightarrow left( {{x}^{2}}+2x right)left( {{x}^{2}}+2x-8 right)=m]
Đặt [{{x}^{2}}+2x+1=yge 0], khi đó (1) trở thảnh [left( y-1 right)left( y-9 right)=mLeftrightarrow {{y}^{2}}-10y+left( 9-m right)=0] (2)
Với cách đặt ẩn phụ như trên, ứng với mỗi giá trị dương của y có hai giá trị của x.
Do đó:
(1) có 4 nghiệm phân biệt [Leftrightarrow ](2) có 2 nghiệm dương phân biệt. Do đó, ở (2) ta phải có:
Bài tập đề nghị:
Bài 1: Tìm các giá trị của m để tồn tại nghiệm không âm của phương trình: [{{x}^{2}}-2x+left( m-2 right)=0]
Bài 2: Tìm các giá trị của m để phương trình sau có nghiệm: [{{x}^{2}}+2mleft| x-2 right|-4x+{{m}^{2}}+3=0]
Bài 3: Tìm các giá trị của m để phương trình: [left( m-1 right){{x}^{2}}-left( m-5 right)x+left( m-1 right)=0]
có 2 nghiệm phân biệt lớn hơn -1.
Bài 4: Tìm các giá trị của m để phương trình: [{{x}^{2}}+mx-1=0] có ít nhất 1 nghiệm lớn hơn hoặc bằng -2.
Bài 5: Tìm các giá trị của m để tập nghiệm của phương trình: [{{x}^{4}}-2left( m-1 right){{x}^{2}}-left( m-3 right)=0]
a) Có 4 phần tử.
b) Có 3 phần tử.
c) Có 2 phần tử.
d) Có 1 phần tử.
Bài viết gợi ý:
Top 21 pt có 2 nghiệm pb khi nào viết bởi Cosy
Tìm m để phương trình sau có hai nghiệm dương phân biệt
- Tác giả: hoidapvietjack.com
- Ngày đăng: 01/28/2023
- Đánh giá: 4.84 (652 vote)
- Tóm tắt: Phương trình đã cho có hai nghiệm dương x 1 , x 2 phân biệt khi và chỉ khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 Vì m 2 + m + 1 > 0 nên bất phương …
Lý thuyết phương trình bậc nhất và bậc hai một ẩn toán 10
- Tác giả: vungoi.vn
- Ngày đăng: 10/01/2022
- Đánh giá: 4.46 (378 vote)
- Tóm tắt: Phương trình bậc nhất và bậc hai một ẩn MÔN TOÁN Lớp 10 với nhiều phương pháp … i) Δ>0 Δ > 0 thì phương trình có hai nghiệm phân biệt x1,2=−b±√Δ2a x 1 …
- Nội Dung: Các phương pháp tìm điều kiện về nghiệm của phương trình là :” Phương pháp so sánh nghiệm của phương trình bậc 2 với số 0” ;” Phương pháp so sánh nghiệm của phương trình bậc 2 với 1 số bất kỳ ”; “so sánh nghiệm của phương trình quy về phương trình …
Lý Thuyết Dấu Của Tam Thức Bậc Hai Và Các Dạng Bài Tập
- Tác giả: vuihoc.vn
- Ngày đăng: 08/25/2022
- Đánh giá: 4.27 (465 vote)
- Tóm tắt: Phương trình có hai nghiệm phân biệt và chỉ một nghiệm thuộc (α;β) khi f(α).f(β) < 0. So sánh nghiệm của tam thức với hai số tam thức bậc …
- Nội Dung: Trên đây là toàn bộ kiến thức và tổng hợp đầy đủ các dạng bài tập về dấu tam thức bậc hai. Hy vọng rằng sau khi đọc bài viết, các bạn học sinh có thể áp dụng công thức để giải các bài tập một cách dễ dàng. Để học và ôn tập kiến thức lớp 12 ôn thi …
Các dạng toán Phương trình bậc 2 một ẩn, cách giải và tính nhẩm
- Tác giả: hayhochoi.vn
- Ngày đăng: 10/22/2022
- Đánh giá: 4.16 (525 vote)
- Tóm tắt: Nếu P > 0 và Δ > 0 thì phương trình có 2 nghiệm cùng dấu, khi đó nếu … Không phải lúc nào x cũng là ẩn số mà có thể là ẩn y, ẩn z ẩn t hay …
- Nội Dung: Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý …
Phương trình (mx^2-left(29m+1right)x+m+3=0)Tìm m để pt … – Olm
- Tác giả: olm.vn
- Ngày đăng: 02/14/2023
- Đánh giá: 3.9 (492 vote)
- Tóm tắt: Phương trình (mx^2-left(29m+1right)x+m+3=0)Tìm m để pt có nghiệm , có nghiệm kép , có 2 nghiệm phân biệt, có nghiệm…
- Nội Dung: Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý …
Top 14+ điều Kiện để Pt Có 2 Nghiệm Pb đều âm hay nhất
- Tác giả: truyenhinhcapsongthu.net
- Ngày đăng: 09/03/2022
- Đánh giá: 3.65 (244 vote)
- Tóm tắt: 12 thg 7, 2021 · Phương trình bậc 2 có hai nghiệm phân biệt khi biệt thức delta lớn hơn 0, nhưng để 2 nghiệm của PT bậc 2 đều âm thì cần điều kiện gì?
- Nội Dung: Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý …
Điều kiện để phương trình bậc 2 có hai nghiệm trái dấu, hai nghiệm dương phân biệt, hai nghiệm âm phân biệt
- Tác giả: mathvn.com
- Ngày đăng: 05/20/2022
- Đánh giá: 3.44 (443 vote)
- Tóm tắt: Hai nghiệm âm phân biệt. Điều kiện để phương trình có hai nghiệm âm phân biệt là begin{cases} Delta & > 0\ P & > 0\ …
- Nội Dung: Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý …
Phương trình nào sau đây có 2 nghiệm phân biệt
- Tác giả: hoc247.net
- Ngày đăng: 04/29/2023
- Đánh giá: 3.24 (477 vote)
- Tóm tắt: Phương trình nào sau đây có 2 nghiệm phân biệt. A. x2 – 6x + 9 = 0. B. . x2 + 1 = 0 … Hãy trả lời câu hỏi trước khi xem đáp án và lời giải.
- Nội Dung: Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý …
Cách giải phương trình bậc 2. Công thức nghiệm của phương trình bậc 2
- Tác giả: lessonopoly.org
- Ngày đăng: 01/28/2023
- Đánh giá: 3.15 (443 vote)
- Tóm tắt: Nếu Δ’ = 0 thì phương trình bậc 2 có nghiệm kép x1 = x2 = -b’/a. Nếu Δ’ > 0 thì phương trình bậc 2 có nghiệm x1, x2: giai phuong trinh bac 2 4 …
- Nội Dung: Trước mỗi chuyên đề mới, chúng tôi đều có những bài giảng và cung cấp kiến thức ôn tập cũng như củng cố kiến thức cho các em học sinh. Hôm nay, chúng ta sẽ đến với chuyên đề về Phương trình bậc hai, cách giải phương trình bậc 2. Cùng tìm câu trả lời …
Công thức nghiệm của phương trình bậc 2 và cách giải các dạng bài tập
- Tác giả: toppy.vn
- Ngày đăng: 04/09/2023
- Đánh giá: 2.98 (158 vote)
- Tóm tắt: Công thức giải phương trình bậc 2 dạng ax2 + bx +c = 0 (a ≠0) có Δ = b2 – 4ac sẽ có 3 trường hợp: Δ = 0: khi đó phương trình sẽ có nghiệm kép …
- Nội Dung: Kho video bài giảng, nội dung minh hoạ sinh động, dễ hiểu, gắn kết học sinh vào hoạt động tự học. Thư viên bài tập, đề thi phong phú, bài tập tự luyện phân cấp nhiều trình độ.Tự luyện – tự chữa bài giúp tăng hiệu quả và rút ngắn thời gian học. Kết …
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện Ôn thi vào lớp 10 môn Toán
- Tác giả: download.vn
- Ngày đăng: 01/03/2023
- Đánh giá: 2.76 (143 vote)
- Tóm tắt: left{ begin{matrix} S = {x_1} + {. Hệ quả: Dựa vào hệ thức Vi-ét khi phương trình bậc 2 một ẩn có nghiệm, ta có thể nhẩm trực tiếp nghiệm của phương …
- Nội Dung: Ta có 0 Leftrightarrow m < frac{{25}}{4}” width=”220″ height=”40″ data-type=”0″ data-latex=”Leftrightarrow 25 – 4m > 0 Leftrightarrow m < frac{{25}}{4}” data-i=”41″ class=”lazy” …
để 1 pt có hai nghiệm phân biệt là sao? – Hoc24
- Tác giả: hoc24.vn
- Ngày đăng: 07/26/2022
- Đánh giá: 2.71 (131 vote)
- Tóm tắt: cách làm nào sai cho pt x^2-mx+m-1=0 tìm m để pt có 2 nghiệm phân biệt … Bài 6: Cho PT x² + mx + m+30.c) Giải PT khi m -2. d) Tìm m để PT có hai nghiệm …
- Nội Dung: Ta có 0 Leftrightarrow m < frac{{25}}{4}” width=”220″ height=”40″ data-type=”0″ data-latex=”Leftrightarrow 25 – 4m > 0 Leftrightarrow m < frac{{25}}{4}” data-i=”41″ class=”lazy” …
- Tác giả: vietjack.com
- Ngày đăng: 04/27/2023
- Đánh giá: 2.5 (74 vote)
- Tóm tắt: Suy ra phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. Giả sử phương trình có hai nghiệm là x1, x2. Áp dụng Vi-et ta có: Cách …
- Nội Dung: Ta có 0 Leftrightarrow m < frac{{25}}{4}” width=”220″ height=”40″ data-type=”0″ data-latex=”Leftrightarrow 25 – 4m > 0 Leftrightarrow m < frac{{25}}{4}” data-i=”41″ class=”lazy” …
Phương trình bậc 2 số phức cực đầy đủ và chi tiết
- Tác giả: hocthatgioi.com
- Ngày đăng: 12/24/2022
- Đánh giá: 2.5 (125 vote)
- Tóm tắt: Khi Δ < 0 Delta < 0 Δ<0 thì phương trình có 2 nghiệm thực phân biệt x 1 , 2 = − b ± i ∣ Δ ∣ 2 a x_{1, 2} = frac{-b pm i sqrt{ |Delta| } }{ …
- Nội Dung: Bài viết hôm nay, HocThatGioi xin được trình bày đến cho các bạn về cách giải phương trình bậc hai với hệ số phức. Hãy theo dõi hết bài viết dưới để học tập hiệu quả hơn nhé. Qua bài viết sẽ giúp các bạn hiểu rõ để giúp các bạn giải quyết thành thục …
Định m để phương trình sau có 4 nghiệm phân biệt : (m – 4)x
- Tác giả: tuhoc365.vn
- Ngày đăng: 06/14/2022
- Đánh giá: 2.31 (153 vote)
- Tóm tắt: Lời giải của Tự Học 365 … Lời giải chi tiết: Đặt : t = x2 ≥ 0. (1) < => (m – 4)t2 – …
- Nội Dung: Bài viết hôm nay, HocThatGioi xin được trình bày đến cho các bạn về cách giải phương trình bậc hai với hệ số phức. Hãy theo dõi hết bài viết dưới để học tập hiệu quả hơn nhé. Qua bài viết sẽ giúp các bạn hiểu rõ để giúp các bạn giải quyết thành thục …
phương trình bậc 2 có 4 nghiệm khi nào
- Tác giả: 123docz.net
- Ngày đăng: 11/03/2022
- Đánh giá: 2.3 (174 vote)
- Tóm tắt: Tìm kiếm phương trình bậc 2 có 4 nghiệm khi nào , phuong trinh bac 2 co 4 nghiem khi nao tại 123doc – Thư viện trực tuyến hàng đầu Việt Nam.
- Nội Dung: Bài viết hôm nay, HocThatGioi xin được trình bày đến cho các bạn về cách giải phương trình bậc hai với hệ số phức. Hãy theo dõi hết bài viết dưới để học tập hiệu quả hơn nhé. Qua bài viết sẽ giúp các bạn hiểu rõ để giúp các bạn giải quyết thành thục …
Điều kiện phương trình bậc 3 có 3 nghiệm
- Tác giả: nguyenkhuyendn.edu.vn
- Ngày đăng: 02/23/2023
- Đánh giá: 2.27 (189 vote)
- Tóm tắt: Phương trình y =0 có hai nghiệm phân biệt. … Chú ý: Phương trình bậc 3 có 3 nghiệm lập thành cấp số cộng khi có 1 nghiệm, có 3 nghiệm lập …
- Nội Dung: Nội dung bài viết Tìm điều kiện để hàm số bậc 3 có cực trị thỏa mãn điều kiện cho trước:HÀM SỐ BẬC 3: y = ax + bx + cx + dx. Hàm số không có cực trị. Hàm số có hai điểm cực trị. Đối với trường hợp hàm bậc ba có hai điểm cực trị, ta có bài toán tổng …
Chuyên đề Hệ phương trình có chứa tham số
- Tác giả: lop12.net
- Ngày đăng: 04/20/2023
- Đánh giá: 2.18 (74 vote)
- Tóm tắt: I-Hệ phương trình gồm một phương trình bậc nhất một phương trình bậc hai … Tìm m để hệ có hai nghiệm phân biệt : 6- Cho hệ pt : a- Giải hệ khi m=2 b- Tìm …
- Nội Dung: Nội dung bài viết Tìm điều kiện để hàm số bậc 3 có cực trị thỏa mãn điều kiện cho trước:HÀM SỐ BẬC 3: y = ax + bx + cx + dx. Hàm số không có cực trị. Hàm số có hai điểm cực trị. Đối với trường hợp hàm bậc ba có hai điểm cực trị, ta có bài toán tổng …
Phương trình có hai nghiệm đối nhau khi và chỉ khi
- Tác giả: cungthi.online
- Ngày đăng: 01/18/2023
- Đánh giá: 1.92 (134 vote)
- Tóm tắt: Phương trình có hai nghiệm đối nhau khi và chỉ khi A . B . C . D . Giải thích:Chọn C có 2 nghiệm đối nhau khi .
- Nội Dung: Nội dung bài viết Tìm điều kiện để hàm số bậc 3 có cực trị thỏa mãn điều kiện cho trước:HÀM SỐ BẬC 3: y = ax + bx + cx + dx. Hàm số không có cực trị. Hàm số có hai điểm cực trị. Đối với trường hợp hàm bậc ba có hai điểm cực trị, ta có bài toán tổng …
Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu | Toán lớp 9
- Tác giả: haylamdo.com
- Ngày đăng: 09/19/2022
- Đánh giá: 1.88 (171 vote)
- Tóm tắt: Phương trình có 2 nghiệm phân biệt cùng dấu âm khi. Tìm m để phương trình bậc hai có hai nghiệm cùng … Không có giá trị nào của m thỏa mãn (1), (2) và (3).
- Nội Dung: Với Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm m để phương trình bậc hai …
Lý thuyết Công thức nghiệm của phương trình bậc hai
- Tác giả: loigiaihay.com
- Ngày đăng: 08/26/2022
- Đánh giá: 1.74 (61 vote)
- Tóm tắt: Do đó Δ=b2−4ac>0 Δ = b 2 − 4 a c > 0 . Vì thế phương trình có hai nghiệm phân biệt. 2. Các dạng toán thường gặp. Dạng 1: Nhận dạng phương trình bậc …
- Nội Dung: Với Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm m để phương trình bậc hai …