Tìm giao điểm của đường thẳng và mặt phẳng là bài tập gây nhiều khó khăn cho phần đông học sinh. Trong phần này chúng tôi sẽ trình bày chi tiết để các bạn học sinh học theo và hiểu được phương pháp tìm giao điểm từ đó phục vụ cho việc học ngày một tốt hơn.
Tìm giao điểm của đường thẳng và mặt phẳng là tìm các điểm chung của đường thẳng và mặt phẳng
Trường hợp ta tìm giao điểm của a với một đường thẳng b nào đó nằm trong (P).Trương hớpn không thấy đường thẳng b, ta thực hiện theo các bước sau:
1. Tìm một mp (Q) chứa a.2. Tìm giao tuyến b của (P) và (Q).3. Gọi: A = a ∩ b thì: A = a ∩ (P).
Chú ý: Hai đường thẳng cắt nhau thuộc 1 mặt phẳng.
Bài tập minh họa tìm giao điểm
Bài 1: Cho tứ diện ABCD. Gọi I, J là các điểm lần lượt nằm trên các cạnh AB, AD với AI = 1/2 IB và AJ = 3/2 JD. Tìm giao điểm của đường thẳng IJ với mặt phẳng (BCD).
Bài giải
Bài 2: Cho tứ diện ABCD. Gọi I, J và K lần lượt là các điểm trên các cạnh AB, BC và CD sao cho AI= 1/3 AB ; BJ = 2/3 BC ; CK = 4/5 CD. Tìm giao điểm của mặt phẳng (IJK) với đường thẳng AD.
Bài giải
Bài tập áp dụng giao điểm đường thẳng và mặt phẳng
Bài 1: Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M, N sao cho MN không song song với BC. Gọi O là một điểm nằm trong tam giác BCD.
- Tìm giao điểm của MN và (BCD)
- Tìm giao tuyến của (OMN) và (BCD)
- Mặt phẳng (OMN) cắt các đường thẳng BD và CD tại H và K. Xác định các điểm H và K
Bài 2: Cho tứ diện ABCD. Gọi M, N, P là các điểm lần lượt trên các cạnh AC, BC, BD.
- Tìm giao điểm của CP và (MND).
- Tìm giao điểm của AP và (MND).
Bài 3: Cho tứ diện ABCD có M, N lần lượt là trung điểm AC, BC. Điểm K ∈ BD : KD < KB.
Tìm giao điểm của: CD và (MNK), AD và ( MNK)
Bài 4: Cho 4 điểm A, B, C, D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC. Trên BD lấy điểm P sao cho BP=2PD
- Tìm giao điểm của đường thẳng CD với mặt phẳng(MNP)
- Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD).
Bài 5: Cho tứ diện ABCD. Hai điểm M, N lần lượt nằm trong tam giác ABC và tam giác ABD. I là điểm tuỳ ý trên CD. Tìm giao của (AB;I) và đường thẳng MN
Bài 6: Cho tứ diện ABCD. Gọi M,N là hai điểm trên AC và AD. O là điểm bên trong tamgiác BCD.
Tìm giao điểm của :
- MN và (ABO )
- AO và (BMN )
Bài 7: Cho tứ diện ABCD . Trên AC và AD lấy hai điểm M,N sao cho MN không song song với CD.Gọi O là điểm bên trong tam giác BCD.
- Tìm giao tuyến của (OMN ) và (BCD )
- Tìm giao điểm của BC với (OMN)
- Tìm giao điểm của BD với (OMN)
Bài 8: Cho tứ diện SABC .Gọi D là điểm trên SA , E là điểm trên SB và F là điểm trên AC ( DE và AB không song song )
- Xđ giao tuyến của hai mp (DEF) và ( ABC )
- Tìm giao điểm của BC với mặt phẳng ( DEF )
- Tìm giao điểm của SC với mặt phẳng ( DEF )
Bài 9: Cho bốn điểm A, B , C, S không cùng ở trong một mặt phẳng . Gọi I, H lần lượt là trung điểm của SA, AB .Trên SC lấy điểm K sao cho : CK = 3KS. Tìm giao điểm của đường thẳng BC với mặt phẳng ( IHK )
Bài 10: Cho tứ diện ABCD có M, N lần lượt là trung điểm AB, BC; P ∈ BD : PB = 2PD. Tìm giao điểm của: AC và (MNP), BD và (MNP)
Bài 11: Cho tứ diện ABCD có M ∈ AC, N ∈ AD và P nằm bên trong tam giác BCD. Tìm giao điểm:
- CD và ( ABP)
- MN và ( ABP)
- AP và (BMN)