Cách tính khoảng cách từ một điểm đến một đường thẳng cực hay

Cách tính khoảng cách từ một điểm đến một đường thẳng cực hay

Với Cách tính khoảng cách từ một điểm đến một đường thẳng cực hay Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập tính khoảng cách từ một điểm đến một đường thẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

A. Phương pháp giải

– Để tính khoảng cách từ điểm M đến đường thẳng Δ ta cần xác định được hình chiếu H của điểm M trên đường thẳng Δ. Khi đó MH chính là khoảng cách từ M đến đường thẳng. Điểm H thường được dựng theo hai cách sau:

+ Trong mp(M; Δ) vẽ MH vuông góc Δ ⇒ d(M; Δ) = MH

+ Dựng mặt phẳng (α) qua M và vuông góc với Δ tại H ⇒ d(M; Δ) = MH.

– Hai công thức sau thường được dùng để tính MH:

+ Tam giác AMB vuông tại M và có đường cao AH thì

+ MH là đường cao của tam giác MAB thì

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp tam giác S.ABC với SA vuông góc với (ABC) và SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?

A. 2a B. 4a C.3a D. 5a

Hướng dẫn giải

+ Kẻ AH vuông góc với BC

Ta có: SA ⊥ (ABC) ⇒ SA ⊥ BC

Lại có: AH ⊥ BC nên BC ⊥ (SAH)

⇒ SH ⊥ BC và khoảng cách từ S đến BC chính là SH

+ Ta có tam giác vuông SAH vuông tại A nên ta có

Chọn D

Ví dụ 2: Cho hình chóp ABCD có cạnh AC ⊥ (BCD) và BCD là tam giác đều cạnh bằng a. Biết AC = a√2 và M là trung điểm của BD. Khoảng cách từ C đến đường thẳng AM bằng

Rất hay:  Hướng dẫn cách vệ sinh dương vật hàng ngày - Long Châu

Hướng dẫn giải

+ Do tam giác BCD đều cạnh a nên đường trung tuyến CM đồng thời là đường cao và MC = a√3/2

+ Ta có: AC ⊥ (BCD) ⇒ AC ⊥ CM

Gọi H là chân đường vuông góc kẻ từ C đến AM

Ta có:

Chọn đáp án C

Ví dụ 3: Cho tứ diện SABC trong đó SA; SB; SC vuông góc với nhau từng đôi một và SA = 3a; SB = a; SC = 2a. Khoảng cách từ A đến đường thẳng BC bằng:

Hướng dẫn giải

Chọn đáp án B

Xét trong tam giác SBC vuông tại S có SH là đường cao ta có:

+ Ta dễ chứng minh được AB ⊥ (SBC) ⊃ SH ⇒ AS ⊥ SH

⇒ tam giác SAH vuông tại S.

Áp dụng định lsi Pytago trong tam giác ASH vuông tại S ta có:

Chọn B

Ví dụ 4: Cho hình chóp A.BCD có cạnh AC ⊥ (BCD) và BCD là tam giác đều cạnh bằng a . Biết AC = a√2 và M là trung điểm của BD . Khoảng cách từ A đến đường thẳng BD bằng:

Hướng dẫn giải

Chọn D

Ta có:

(Định lý 3 đường vuông góc)

⇒ d(A, BD) = AM, CM = a√3/2 (vì tam giác BCD đều).

+ AC vuông góc ( BCD) nên AC vuông góc CM hay tam giác ACM vuông tại C.

Ví dụ 5: Cho hình chóp S.ABCD có SA ⊥ (ABCD) , đáy ABCD là hình thoi cạnh bằng a và ∠B = 60° . Biết SA = 2a. Tính khoảng cách từ A đến SC.

Hướng dẫn giải

Chọn C

Kẻ AH ⊥ SC, khi đó d(A; SC) = AH

+ Do ABCD là hình thoi cạnh bằng a và ∠B = 60° nên tam giác ABC đều ⇒ AC = a

Rất hay:  Bật mí 3 cách xóa chữ trên ảnh bằng Photoshop xịn như dân chuyên

+ Do SA vuông góc (ABCD) nên SA vuông góc AC hay tam giác SAC vuông tại A.

Trong tam giác vuông ta có:

Ví dụ 6: Cho hình chóp S. ABCD có SA ⊥ (ABCD) ; SA = 2a, ABCD là hình vuông cạnh bằng a. Gọi O là tâm của ABCD, tính khoảng cách từ O đến SC.

Hướng dẫn giải

Chọn A

+ Kẻ OH ⊥ SC , khi đó d(O; SC) = OH

+ Ta có: ΔSAC ∼ ΔOHC (g.g) (g-g) nên

Ví dụ 7: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc hợp bởi một cạnh bên và mặt đáy bằng α. Khoảng cách từ tâm của đáy đến một cạnh bên bằng

Hướng dẫn giải

Chọn D

+ Gọi O là tâm của hình vuông ABCD.

+ Do S.ABCD là hình chóp tứ giác đều nên SO ⊥ (ABCD)

+ Theo giả thiết góc giữa cạnh bên và mặt đáy là α nên : ∠SDO = α

Kẻ OH ⊥ SD, khi đó d(O, SD) = OH

Ta có: BD = a√a nên OD = (1/2)BD = (1/2).a√2 = (a√2)/2

+ Xét tam giác vuông OHD:

OH = OD.sinα = (a√2/2).sinα

C. Bài tập vận dụng

Câu 1: Cho hình chóp S.ABC trong đó SA; AB; BC vuông góc với nhau từng đôi một. Biết SA = 3a, AB = a√3, BC = a√6. Khoảng cách từ B đến SC bằng

A. a√2 B. 2a C. 2a√3 D. a√3

Lời giải:

Chọn B

+ Vì SA, AB, BC vuông góc với nhau từng đôi một nên CB ⊥ (SAB) ⇒ CB ⊥ SB .

+ Kẻ BH ⊥ SC, khi đó d(B; SC) = BH.

Ta có:

Trong tam giác SBC vuông tại B ta có:

Câu 2: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khoảng cách từ đỉnh A của hình lập phương đó đến đường thẳng CD’ bằng

Lời giải:

Gọi M là trung điểm của CD’

Do ABCD.A’B’C’D’ là hình lập phương nên tam giác ACD’ là tam giác đều cạnh a√2 .

Rất hay:  Cách rửa mũi cho bé - 5 lưu ý quan trọng để đảm bảo an toàn

+ Tam giác ACD’ có AM là đường trung tuyến nên đồng thời là đường cao AM ⊥ CD’.

d(A; CD’) = AM = AC.sin(ACM) = a√2.sin60°= (a√6)/2

Đáp án: B

Câu 3: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khoảng cách từ đỉnh A của hình lập phương đó đến đường thẳng DB’ bằng

Lời giải:

Gọi H là chân đường vuông góc hạ từ A xuống DB’.

Ta có:

⇒ AD ⊥ AB’

Xét tam giác ADB’ vuông tại A; đường cao AH:

Đáp án D

Câu 4: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khoảng cách từ ba điểm nào sau đây đến đường chéo AC’ bằng nhau ?

A. A’, B, C’ B. B, C, D C. B’, C’, D’ D. A, A’, D’

Lời giải:

Dễ thấy các tam giác ABC’, C’CA, ADC’ là các tam giác vuông bằng nhau nên các đường cao hạ từ đỉnh góc vuông xuống canh huyền cũng bằng nhau.

Vậy: d(B; AC’) = d(C; AC’) = d(D; AC’)

Đáp án B

Câu 5: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao SO = a√3/3. Khoảng cách từ điểm O đến cạnh bên SA bằng

Lời giải:

Chọn B

Vì hình chóp S.ABC đều có SO là đường cao

⇒ O là tâm của tam giác ABC.

+ Gọi I là trung điểm cạnh BC.

Tam giác ABC đều nên

Kẻ OH ⊥ SA; khi đó d(O; SA) = OH

Xét tam giác SAO vuông tại O:

Câu 6: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Khoảng cách từ đỉnh A của hình lập phương đó đến đường thẳng CD’ bằng

Lời giải:

Gọi M là trung điểm của CD’

Do ABCD.A’B’C’D’ là hình lập phương nên tam giác ACD’ là tam giác đều cạnh a√2

Đáp án: B